SISTEMI COMPLESSI

In fisica moderna la scienza dei sistemi complessi è una branca della scienza moderna che studia i cosiddetti sistemi complessi, venuta affermandosi negli ultimi decenni sotto la spinta dell’informatizzazione (uso di supercomputer) e grazie alla crescente inclinazione, nell’indagine scientifica, a rinunciare alle assunzioni di linearità nei sistemi dinamici per indagarne più a fondo il comportamento reale.
….
Di centrale importanza in questo contesto è il concetto di linearità, che non va confuso con l’omonimo concetto colloquiale, ma va inteso nel senso della teoria dei sistemi.

In generale un problema è lineare se lo si può scomporre in un insieme di sotto-problemi indipendenti tra loro. Quando, invece, i vari componenti/aspetti di un problema interagiscono gli uni con gli altri così da renderne impossibile la separazione per risolvere il problema passo-passo e “a blocchi”, allora si parla di non-linearità.

Più specificatamente in ambito sistemistico un sistema è lineare se risponde in modo direttamente proporzionale alle sollecitazioni ricevute. Si dice allora che per quel sistema vale il principio di sovrapposizione degli effetti, nel senso che se alla sollecitazione S1 il sistema dà la risposta R1 e alla sollecitazione S2 dà la risposta R2, allora alla sollecitazione (S1+S2) esso risponderà con (R1+R2).
….
I sistemi e i problemi che si presentano in natura sono essenzialmente non-lineari.

ESEMPIO:

Si immagini di condurre uno studio di una popolazione di animali per modellare con un’equazione l’andamento nel tempo della popolazione in funzione della disponibilità di cibo. Se esistono predatori per quel tipo di animale, il modello lineare si rivela semplicistico e inadeguato: infatti, la popolazione degli animali predati diventa anche una funzione della popolazione dei predatori; ma, a sua volta, l’espansione o la contrazione della popolazione dei predatori dipenderà anche dalla presenza di prede. Il sistema prede – predatori – cibo, dunque, è intrinsecamente non lineare perché nessuno dei suoi componenti può essere studiato separatamente dagli altri.
….

Auto-organizzazione.

I sistemi complessi adattivi (CAS in inglese) sono sistemi dinamici con capacità di auto-organizzazione composti da un numero elevato di parti interagenti in modo non lineare che danno luogo a comportamenti globali che non possono essere spiegati da una singola legge fisica. 

“Un CAS può essere descritto come un instabile aggregato di agenti e connessioni, auto-organizzati per garantirsi l’adattamento. E’ un sistema che emerge nel tempo in forma coerente, e si adatta ed organizza senza una qualche entità singolare atta a gestirlo o controllarlo deliberatamente. L’adattamento è raggiunto mediante la costante ridefinizione del rapporto tra il sistema e il suo ambiente (co-evoluzione).
…..
Dalla non-linearità di interazione tra le componenti di un sistema e la loro auto-organizzazione scaturisce l’attitudine di questo a esibire proprietà inspiegabili sulla base delle leggi che governano le singole componenti stesse:

«Il comportamento emergente di un sistema è dovuto alla non-linearità. Le proprietà di un sistema lineare sono infatti additive: l’effetto di un insieme di elementi è la somma degli effetti considerati separatamente, e nell’insieme non appaiono nuove proprietà che non siano già presenti nei singoli elementi. Ma se vi sono termini/elementi combinati, che dipendono gli uni dagli altri, allora il complesso è diverso dalla somma delle parti e compaiono effetti nuovi.»
….
Quantunque il comportamento emergente sia più facilmente riscontrabile in sistemi di organismi viventi o di individui sociali oppure ancora in sistemi economici ovvero in sistemi ‘complicati’ dai molteplici gradi di libertà, diversamente da una credenza oggi diffusa l’emergenza si manifesta anche in contesti molto più elementari, come ad esempio la fisica delle particelle e la fisica atomica; e anzi, proprio questo fatto ne attesta l’importanza sul piano epistemologico, nel senso che si può contestare risolutamente la visione riduzionista in base alla quale ogni conoscenza scientifica deve essere fatta risalire a quella delle leggi che governano le particelle elementari. Invece, al salire della scala geometrica (particelle, atomi, molecole, eccetera), emergono leggi nuove che, senza violarle, integrano e superano quelle dei livelli precedenti.
…..
È importante sottolineare che la conditio sine qua non per l’emergenza è la non-linearità delle interazioni tra le componenti di un sistema e non già la numerosità di queste. Per questo motivo nel sistema vivente umano la coscienza, il linguaggio o la capacità auto-riflessiva sono ritenute proprietà emergenti perché non spiegabili dalla semplice interazione tra neuroni.
….

Proprietà emergenti

Un comportamento emergente o proprietà emergente può comparire quando un numero di entità semplici (agenti) operano in un ambiente, dando origine a comportamenti più complessi in quanto collettività. La proprietà stessa non è facilmente predicibile, e rappresenta un successivo livello di evoluzione del sistema. I comportamenti complessi non sono proprietà delle singole entità e non possono essere facilmente riconosciuti o dedotti dal comportamento di entità del livello più basso. La forma e il comportamento di uno stormo di uccelli o di un banco di pesci sono buoni esempi di proprietà emergente.

Una delle ragioni per cui si verifica un comportamento emergente è che il numero di interazioni tra le componenti di un sistema aumenta combinatoriamente con il numero delle componenti, consentendo il potenziale emergere di nuovi e più impercettibili tipi di comportamenti.
….
Apparentemente i sistemi con proprietà emergenti o strutture emergenti sembrano superare il principio entropico e sconfiggere la seconda legge della termodinamica, in quanto creano e aumentano l’ordine. Questo è possibile perché i sistemi aperti possono ricavare informazione e ordine dall’ambiente. La seconda legge della termodinamica in realtà si riferisce ad un sistema chiuso: “se avviene un processo irreversibile, in un sistema chiuso, l’entropia S del sistema aumenta sempre, in particolare non diminuisce mai“. Nei sistemi aperti l’aumento dell’entropia dell’universo non viene comunque violata.

Secondo una prospettiva innovativa nell’ambito della psicologia, l’intelligenza, il linguaggio umano, la percezione di elementi qualitativi (qualia) e l’autoriflessività sono comportamenti emergenti dell’uomo che emergono senza che possano essere desumibili dalla sola interazione madre-bambini o dai soli neuroni.


….
Le strutture emergenti sono il risultato delle interazioni di ogni parte con il suo intorno che tramite un processo complesso porta all’ordine. Si potrebbe concludere che le strutture emergenti non si riducono alla congiunzione delle loro parti, perché affinché emerga l’ordine non è sufficiente la mera coesistenza delle varie parti, ma è necessario che le stesse interagiscano in un certo modo.

Un esempio biologico è una colonia di formiche. Ogni singola formica reagisce a stimoli, in forma di odori chimici provenienti dalle larve, dalle altre formiche, da intrusi, cibo e immondizia, e si lascia dietro una traccia chimica che, a sua volta, servirà da stimolo alle altre. Ogni formica è un’unità autonoma che reagisce solamente in relazione all’ambiente, alle regole genetiche della sua specie ed alle altre formiche. Nonostante la mancanza di un ordine centralizzato, le colonie di formiche esibiscono un comportamento complesso ed hanno dimostrato la capacità di affrontare problemi geometrici. Ad esempio, localizzano un punto alla distanza massima da tutte le entrate della colonia per disporvi i corpi morti.

Questo fenomeno è simile ad altre strutture emergenti riscontrate negli insetti sociali, basate principalmente su feromoni e odori chimici. Strutture emergenti si possono osservare per molti animali che vivono in gruppo (sciami di api, stormi di uccelli, banchi di pesci o branchi di lupi, greggi e mandrie di mammiferi,…)

Un tumulo a forma di “cattedrale” prodotto da una colonia di termiti offre un classico esempio di struttura emergente in natura. E per questo è l’IMMAGINE SIMBOLO della RETE DEGLI INCONSCI.
….


Emergenza in fisica.

Teorie sui gruppi di particelle

In fisica, l’emergenza è usata per descrivere una proprietà, legge o fenomeno che si manifesta su scala macroscopica (nello spazio o nel tempo), ma non a livello microscopico, al di là del fatto che un sistema macroscopico può essere considerato come un grande insieme di sistemi microscopici. Alcuni esempi:

• Colore. Le particelle elementari come protoni o elettroni non hanno colore. Solo quando sono disposti in atomi assorbono o emettono specifiche lunghezze d’onda così da poter definire il colore della materia.

• Attrito. Le particelle elementari non hanno attrito, o meglio le forze che agiscono tra loro sono conservative. L’attrito emerge quando si considerano strutture più complesse di materia, le cui superfici possono assorbire energia se sfregate tra loro. Considerazioni simili si possono applicare ad altri concetti come la viscosità, l’elasticità, la resistenza alla trazione.

• Meccanica classica. Si può dire che le leggi della meccanica classica emergono come caso limite dalle regole della meccanica quantistica applicate a masse abbastanza grandi. Ciò sembra una contraddizione, perché la meccanica quantistica è generalmente considerata più complessa della meccanica classica – mentre di solito i livelli più bassi hanno regole meno complicate (o meno complesse) rispetto alle proprietà emergenti.

• Meccanica statistica. La meccanica statistica nasce dall’idea di utilizzare insiemi tanto grandi da poter ignorare le fluttuazioni rispetto alla distribuzione più verosimile. Di conseguenza, è stato necessario modificare o abbandonare alcuni concetti in relazione ai sistemi microscopici, in cui le fluttuazioni diventano (relativamente) importanti per una descrizione realistica del sistema. Ad esempio, piccole masse non mostrano evidenti cambiamenti di fase di primo ordine, come la fusione, e al limite non è possibile categorizzare chiaramente la massa come liquida o solida, poiché questi concetti si possono applicare solo ai sistemi macroscopici.

• La temperatura è spesso usata come esempio di comportamento emergente macroscopico. Nella dinamica classica, la quantità di moto istantanea di un numero abbastanza grande di particelle all’equilibrio è sufficiente a calcolare l’energia cinetica media per grado di libertà, che è proporzionale alla temperatura. Per un piccolo numero di particelle le quantità di moto istantanee non sono statisticamente sufficienti a determinare la temperatura del sistema. Tuttavia, utilizzando l’ipotesi ergodica, è possibile ottenere la temperatura normalizzando le quantità di moto per un periodo di tempo sufficientemente lungo.
…..

In alcune teorie di fisica delle particelle, anche le grandezze di base come massa, spazio, tempo, sono considerate fenomeni emergenti, che nascono da concetti fondamentali quali il bosone di Higgs o le stringhe. In alcune interpretazioni della meccanica quantistica, la percezione di una realtà deterministica, in cui ogni oggetto ha una definita posizione, momento, ecc., è in realtà un fenomeno emergente, mentre il vero stato della materia viene descritto come una funzione d’onda che non ha bisogno di avere posizione o quantità di moto definiti.
….

La fisica delle particelle

Ad esempio, se si considera la chimica come emergente dalle interazioni delle particelle subatomiche, la biologia cellulare come emergente dalle interazioni chimiche, l’uomo come emergente dalle interazioni cellulari, la civilizzazione come emergente dalle interazioni umane, la storia umana come emergente dalle interazioni tra civiltà, questo non implica che sia particolarmente facile o desiderabile tentare di spiegare la storia umana in termini di interazioni tra particelle.

****

Informazioni su inconsci2

filosofo evoluzionista
Questa voce è stata pubblicata in Uncategorized. Contrassegna il permalink.

Lascia un commento